(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB3
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

if (x > 0) {
while (x > y) {
y = x+y;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
PastaB3.main([Ljava/lang/String;)V: Graph of 161 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 10 rules for P and 3 rules for R.


Combined rules. Obtained 1 rules for P and 0 rules for R.


Filtered ground terms:


689_0_main_LE(x1, x2, x3, x4, x5) → 689_0_main_LE(x2, x3, x4, x5)
Cond_689_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_689_0_main_LE(x1, x3, x4, x5, x6)

Filtered duplicate args:


689_0_main_LE(x1, x2, x3, x4) → 689_0_main_LE(x3, x4)
Cond_689_0_main_LE(x1, x2, x3, x4, x5) → Cond_689_0_main_LE(x1, x4, x5)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(x1[0] >= 0 && x1[0] < x0[0] && x0[0] > 0, x0[0], x1[0])
(1): COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], x0[1] + x1[1])

(0) -> (1), if ((x1[0] >= 0 && x1[0] < x0[0] && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(1) -> (0), if ((x0[1]* x0[0])∧(x0[1] + x1[1]* x1[0]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 689_0_MAIN_LE(x0, x1) → COND_689_0_MAIN_LE(&&(&&(>=(x1, 0), <(x1, x0)), >(x0, 0)), x0, x1) the following chains were created:
  • We consider the chain 689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0]), COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], +(x0[1], x1[1])) which results in the following constraint:

    (1)    (&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0))=TRUEx0[0]=x0[1]x1[0]=x1[1]689_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧689_0_MAIN_LE(x0[0], x1[0])≥COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE>=(x1[0], 0)=TRUE<(x1[0], x0[0])=TRUE689_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧689_0_MAIN_LE(x0[0], x1[0])≥COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)







For Pair COND_689_0_MAIN_LE(TRUE, x0, x1) → 689_0_MAIN_LE(x0, +(x0, x1)) the following chains were created:
  • We consider the chain 689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0]), COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], +(x0[1], x1[1])), 689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0]) which results in the following constraint:

    (8)    (&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0))=TRUEx0[0]=x0[1]x1[0]=x1[1]x0[1]=x0[0]1+(x0[1], x1[1])=x1[0]1COND_689_0_MAIN_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_689_0_MAIN_LE(TRUE, x0[1], x1[1])≥689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))∧(UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥))



    We simplified constraint (8) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x0[0], 0)=TRUE>=(x1[0], 0)=TRUE<(x1[0], x0[0])=TRUECOND_689_0_MAIN_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_689_0_MAIN_LE(TRUE, x0[0], x1[0])≥689_0_MAIN_LE(x0[0], +(x0[0], x1[0]))∧(UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x0[0] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x0[0] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x0[0] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x1[0] + x0[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 689_0_MAIN_LE(x0, x1) → COND_689_0_MAIN_LE(&&(&&(>=(x1, 0), <(x1, x0)), >(x0, 0)), x0, x1)
    • (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)

  • COND_689_0_MAIN_LE(TRUE, x0, x1) → 689_0_MAIN_LE(x0, +(x0, x1))
    • (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x1[0] + x0[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [3]   
POL(FALSE) = [2]   
POL(689_0_MAIN_LE(x1, x2)) = [-1]x2 + x1   
POL(COND_689_0_MAIN_LE(x1, x2, x3)) = [-1]x3 + x2   
POL(&&(x1, x2)) = [1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   

The following pairs are in P>:

COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))

The following pairs are in Pbound:

689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])
COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))

The following pairs are in P:

689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(x1[0] >= 0 && x1[0] < x0[0] && x0[0] > 0, x0[0], x1[0])


The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE