0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
if (x > 0) {
while (x > y) {
y = x+y;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 10 rules for P and 3 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
689_0_main_LE(x1, x2, x3, x4, x5) → 689_0_main_LE(x2, x3, x4, x5)
Cond_689_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_689_0_main_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
689_0_main_LE(x1, x2, x3, x4) → 689_0_main_LE(x3, x4)
Cond_689_0_main_LE(x1, x2, x3, x4, x5) → Cond_689_0_main_LE(x1, x4, x5)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] >= 0 && x1[0] < x0[0] && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] →* x0[0])∧(x0[1] + x1[1] →* x1[0]))
(1) (&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 689_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧689_0_MAIN_LE(x0[0], x1[0])≥COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(x1[0], 0)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ 689_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧689_0_MAIN_LE(x0[0], x1[0])≥COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [(-1)bni_14]x1[0] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(7) (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(8) (&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x0[0]1∧+(x0[1], x1[1])=x1[0]1 ⇒ COND_689_0_MAIN_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_689_0_MAIN_LE(TRUE, x0[1], x1[1])≥689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))∧(UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥))
(9) (>(x0[0], 0)=TRUE∧>=(x1[0], 0)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ COND_689_0_MAIN_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_689_0_MAIN_LE(TRUE, x0[0], x1[0])≥689_0_MAIN_LE(x0[0], +(x0[0], x1[0]))∧(UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥))
(10) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x0[0] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x0[0] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x0[0] ≥ 0)
(13) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [(-1)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] ≥ 0)
(14) (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x1[0] + x0[0] ≥ 0)
POL(TRUE) = [3]
POL(FALSE) = [2]
POL(689_0_MAIN_LE(x1, x2)) = [-1]x2 + x1
POL(COND_689_0_MAIN_LE(x1, x2, x3)) = [-1]x3 + x2
POL(&&(x1, x2)) = [1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))
689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])
COND_689_0_MAIN_LE(TRUE, x0[1], x1[1]) → 689_0_MAIN_LE(x0[1], +(x0[1], x1[1]))
689_0_MAIN_LE(x0[0], x1[0]) → COND_689_0_MAIN_LE(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), >(x0[0], 0)), x0[0], x1[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer